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Abstract—FERC order 755 and FERC order 784 provide pay-
for-performance requirements and direct utilities and indepen-
dent system operators to consider speed and accuracy when
purchasing frequency regulation. Independent System Operators
(ISOs) have differing implementations of pay-for-performance.
This paper focuses on the PJM implementation. PJM is a
regional transmission organization in the northeastern United
States that serves 13 states and the District of Columbia. PJM’s
implementation employs a two part payment based on the
Regulation Market Capability Clearing price (RMCCP) and the
Regulation Market Performance Clearing Price (RMPCP). The
performance credit includes a mileage ratio. Both the RMCCP
and RMPCP employ an actual performance score. Using the PJM
remuneration model, this paper outlines the calculations required
to estimate the maximum potential revenue from participation
in arbitrage and regulation in day-ahead markets using linear
programming. Historical PJM data from 2014 and 2015 was then
used to evaluate the maximum potential revenue from a 5 MWh,
20 MW system based on the Beacon Power Hazle Township
flywheel plant. Finally, a heuristic trading algorithm that does
not require perfect foresight was evaluated against the results of
the optimization algorithm.

I. INTRODUCTION

In deregulated electricity markets storage is ultimately only
as valuable as the revenue stream generated by the storage
device, regardless of the application or benefit. This revenue
stream comes from participating in markets for energy and
ancillary services (e.g., frequency regulation, operating and
contingency reserves) [1]. In regulated regions, vertically
integrated utilities must invest in technologies that provide
reliable electricity to the consumer at the lowest cost. In this
scenario, electricity storage must be compared to the cost of
competitive technologies that provide the capabilities required
by the utility. An additional source of revenue is government
incentives designed to guide future investment decisions based
on the public good.

The two potential revenue streams considered in this paper
are energy arbitrage and participation in the regulation market.
Arbitrage involves purchasing (charging) energy when prices
are low, e.g., during times of low demand, and selling (dis-
charging) energy when prices are high, e.g., during times of
peak demand.

Regulation up (RegUp) and down (RegDown) are ancillary
services designed to maintain frequency stability. Sometimes
they are combined into a single regulation product. If the load
increases while generation is held constant, the frequency will
drop. In order to maintain tight tolerances on the frequency,

generation must be constantly dithered so that load and
generation are equal. Depending on the market, a balancing
authority or vertically integrated utility will control generation
on a second by second basis to track the load. The balancing
authority must reserve enough regulation capacity to meet
expected variations in load.

Regulation up is the ability to provide additional genera-
tion on command. Regulation down is the ability to reduce
generation, or store power, on demand. Until recently, the
practice was to reimburse regulation providers based mainly on
capacity reserved along with compensation for any electricity
that is purchased or sold. This approach did not compensate
fast-responding systems for more accurately following com-
manded regulation signals and the increased benefit provided
compared to slower resources. FERC order 755 and FERC
order 784 provide pay-for-performance requirements and di-
rect utilities and independent system operators to consider
speed and accuracy when purchasing frequency regulation
[2], [3]. Independent System Operators (ISOs) have differing
implementations of pay-for-performance. This paper focuses
on the PJM implementation.

A framework is outlined in this paper for calculating the
maximum revenue from an electricity storage system that par-
ticipates in a day-ahead market, i.e., energy arbitrage, and in
a regulation market. The approach is designed to calculate the
best-case scenario using historical data to simulate operation
with perfect day-ahead energy and reserve price forecasts. This
best-case scenario calculation is critical because it provides an
upper bound on the revenue that can be collected by a storage
facility and can be used to score other trading strategies.
Hence, it is useful in estimating an upper bound for the
value of a storage facility. Cost data is required to perform
a cost-benefit analysis for a particular system and location.
Information on the capital and operational costs of different
energy storage technologies may be found in [4]. It should
also be noted that this approach is only valid for scenarios
where the size of the storage is such that it does not impact
market prices. For large systems that might impact the market,
a production cost modeling approach must be implemented.

The approach in this paper formulates the revenue max-
imization problem as a linear program. The energy storage
model and optimization formulation builds on the results in
[5], where the authors present a stochastic framework for the
valuation of electricity storage. Revenue from energy arbitrage
and the regulation ancillary services market are only two of



the potential benefits of electricity storage devices. A complete
review of potential revenue streams is outlined in [6], [7].
An early summary of potential arbitrage revenue in various
markets is found in [8].

Previous results using a similar approach (without pay-for-
performance) were presented in [9], [10], [11]. The algorithm,
results for CAISO data (including a sensitivity analysis for
each parameter), and results for several implementable trading
algorithms appear in [9]. ERCOT results for a single node,
two years of data, and implementable trading algorithms are
presented in [10]. All nodes in ERCOT were analyzed over
a three year period to look at the impact of location and to
identify longer term trends in [11]. This paper extends the
optimization approach to include pay-for-performance as im-
plemented by PJM, and presents results for a system modeled
after the Beacon Hazle Township flywheel plant [12].

This report is organized as follows: Section II provides
an overview of the PJM pay-for-performance implementation.
Section III presents the energy storage model that is used
throughout this paper. Section IV provides the revenue maxi-
mization problem formulation. Section V presents results for
a 5 MWh, 20 MW energy storage system modeled after the
Beacon plant. Concluding remarks are found in Section VI.

II. PJM PAY-FOR-PERFORMANCE

Motivated by FERC order 755 [2], the industry is evolving
towards pay-for-performance where compensation is based
on the amount of work performed by a device and the
payment must reflect the device’s accuracy when following
a regulation signal. A good example of this model is the
PJM Interconnection, which is a regional transmission or-
ganization (RTO) that coordinates the movement of whole-
sale electricity in all or parts of Delaware, Illinois, Indiana,
Kentucky, Maryland, Michigan, New Jersey, North Carolina,
Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and
the District of Columbia [13]. Remuneration is based on the
capability offered as well as the performance provided [14].
Both payments are weighted by a performance score. The
performance score is calculated for each hourly interval from
three components: the delay score, the correlation score, and
the precision score [15]. At this time, all three are weighted
equally. The capability component, described in equation (1),
is a function of the Regulation Market Capability Clearing
Price (RMCCP) [14]. The capability credit is the hourly-
integrated regulation, REGt, times the actual performance
score for the hourly period, ηt, times the RMCCP.

RMCCP credit = REGt × ηt ×RMCCPt (1)

For fast responding resources, the performance component
described in (2) is a function of the Regulation Market
Performance Clearing Price (RMPCP) [14]. The performance
credit is the hourly-integrated regulation, REGt, times the
actual performance score for the hourly period, ηt times the
mileage ratio, βM

t , times the RMPCP.

RMPCP credit = REGt × ηt × βM
t ×RMPCPt (2)

PJM offers two different regulation signals: RegA and RegD.
RegA is a low pass filtered area control error (ACE) signal
designed for traditional regulating resources. RegD is a high
pass filtered ACE signal for faster responding resources like
energy storage. For RegD systems, the PJM mileage ratio,
βM
t , is defined as:

βM
t =

RegD Mileage
RegA Mileage

(3)

Mileage is simply defined as the movement requested by the
regulation control signal. For example, the RegD mileage is
defined as:

RegD Mileage =

N∑
i=1

|RegDi −RegDi−1| (4)

over the one hour time period. The PJM mileage ratio in-
creases the compensation for faster responding resources.
The increased mileage results from following a signal with
higher frequency content. The total compensation for a plant
providing regulation services is the sum of the RMCCP credit
and the RMPCP credit.

The next section covers the model of an energy storage
system.

III. ELECTRICITY STORAGE MODEL

The key parameters that characterize a storage device are:
1) Power Rating: [MW] The maximum power of the stor-

age device (charge and discharge).
2) Energy Capacity: [Joules or MWh] The amount of

energy that can be stored.
3) Efficiency: [%] Efficiency can be broken down into two

components: conversion efficiency, γc, and storage efficiency,
γs. Conversion efficiency describes the losses encountered
when input power is stored in the system. Storage efficiency
describes the time-based losses in a storage system.

4) Ramp Rate: [MW/min] the ramp rate describes how
quickly the storage device can change its power level.

For the analysis in this paper, we are concerned with the
quantity of energy charged or discharged during each time
period for each potential activity (e.g., arbitrage or regulation).
For arbitrage, the device will maintain a constant output power
over each time period. For regulation, it is assumed that the
device is capable of tracking the regulation signal. We also
assume the ramping time is negligible (i.e., energy storage
ramp rates are high). If the ramp rate is slow compared to the
time period, this approximation does not hold and a model
that incorporates ramp rate must be employed.

The parameters in Table I are those involved in storage
system constraints. Thus, the maximum quantity that can be
sold/discharged in a single period is equivalent to:

q̄D = (Maximum discharge power level)× τ (5)

Likewise, the maximum quantity that can be bought/recharged
in a single period is equivalent to:

q̄R = (Maximum recharge power level)× τ (6)



TABLE I
STORAGE PARAMETERS

Symbol Storage Parameter

τ Time period length (e.g., one hour).
T Number of time periods in optimization.
q̄D Maximum energy sold in a single period (MWh).
q̄R Maximum energy bought in a single period (MWh).
S̄ Maximum energy storage capacity (MWh).
γs Storage efficiency over one period (%).
γc Conversion efficiency (%).

For a storage device that provides only one service, there
are two decision variables in the optimization: the energy
sold qDt (discharged) at time t, and the energy purchased qRt
(recharged) at time t in MWh. They are assumed to be non-
negative quantities. In this case, the state of charge (SOC) St

at any time t is given by:

St = γsSt−1 + γcq
R
t − qDt ∀t ∈ T (7)

which states that the SOC at time t is the SOC at time t− 1
adjusted for storage losses plus any net charging (adjusted
for conversion losses) minus the quantity discharged during t.
Additional constraints include:

0 ≤St ≤ S̄, ∀ t ∈ T (8)

0 ≤qRt ≤ q̄R, ∀ t ∈ T (9)

0 ≤qDt ≤ q̄D, ∀ t ∈ T (10)

For a device that is participating in arbitrage and the regulation
market, a few additional parameters must be added into the
storage device model. An additional decision variable must
be added to capture the quantity bid in to the regulation
market, qREG

t . For this analysis, it is assumed that the assigned
quantity is equal to the bid quantity (qREG

t = REGt). This
decision variable is assumed to be a non-negative quantity.
In regulation markets, there is no guarantee that the capacity
reserved will actually be deployed. A representative PJM
RegD regulation command signal is shown in Figure 1.

In order to quantify the change in SOC from participation
in the regulation market, it is useful to define the RegUp
efficiency γRU

t as the fraction of the RegUp reserve capacity
that is actually deployed at time t. Similarly, the RegDown
efficiency γRD

t is the fraction of the RegDown reserve capacity
that is actually deployed at time t. In the actual operation of
a storage system, γRU

t and γRD
t will vary over each time

interval. To formulate the problem as an LP optimization, a
known value must be employed. Fortunately, PJM provides
historical regulation signals so it is possible to calculate γRU

t

and γRD
t at each time step. Thus, the SOC at time t for a

device participating in arbitrage and regulation is given by:

St = γsSt−1 + γcq
R
t − qDt + γcγ

RD
t qREG

t − γRU
t qREG

t (11)
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Fig. 1. Representative PJM RegD regulation command signal (June 1, 2014)
[16].

And it is complemented by the following constraints:

0 ≤St ≤ S̄, ∀ t ∈ T (12)

0 ≤qRt + qREG
t ≤ q̄R, ∀ t ∈ T (13)

0 ≤qDt + qREG
t ≤ q̄D, ∀ t ∈ T (14)

The quantity allocated to regulation, qREG
t , reduces the max-

imum potential quantities allocated to arbitrage subject to the
charge/discharge constraints of the device.

IV. MAXIMIZING STORAGE REVENUE

The problem of maximizing revenue from an energy storage
device is naturally formulated as an LP optimization problem
[17]. The energy storage model presented above is combined
with a cost function to maximize the revenue for arbitrage
combined with participation in the regulation market. The
objective function when the storage device participates in
arbitrage and regulation is given by:

max

T∑
t=1

[(Pt − Cd)qDt − (Pt + Cr)qRt + (15)

qREG
t ηt(β

M
t RMPCPt +RMCCPt)]e

−rt

where each term is defined as:

Pt LMP for energy at time t $/MWh)
Cd Cost for discharging ($/MWh)
Cr Cost for recharging ($/MWh)
qDt Energy discharged at time t (MWh)
qRt Energy charged at time t (MWh)
qREG
t Regulation capability at time t (MWh)
ηt Performance score at time t (%)
βM
t Mileage ratio at time t
RMPCPt Regulation Market Performance Clearing Price ($/MWh)
RMCCPt Regulation Market Capability Clearing Price ($/MWh)
e−rt Discounting term (time value of money)

In many areas, the net energy for regulation is settled
at the real-time price. This provides an additional arbitrage
opportunity between the day ahead price and the real-time
price. For this analysis, the price Pt was assumed to represents



both. While this does not reflect the actual settlement process,
it keeps the optimization from incorporating any arbitrage
between the day ahead and the real-time market.

Constraints shown in (11)-(14) complete the optimization
problem for maximizing revenue from arbitrage and regu-
lation. The solution is the energy bought and sold at each
time step as well as the amount offered into the regulation
market that maximizes the storage unit revenue. The PJM
model employs a single market for regulation (RegUp and
RegDown).

The next section applies these optimization techniques to
estimate the maximum potential revenue for a 5 MWh, 20
MW energy storage device modeled after the Beacon Power
Hazle Township, Pennsylvania flywheel plant.

V. CASE STUDY

This section presents results for a representative energy
storage system located in PJM, the Beacon Power Hazle
Township flywheel plant [12]. The Beacon facility was devel-
oped, built, and commissioned through the DOE Smart Grid
Demonstration Program. It comprises 200 flywheels that can
source or sink 20 MW for 15 minutes. The facility, owned and
operated by Hazle Spindle LLC (a subsidiary of Rockland
Power Partners, LP), sells frequency regulation services to
PJM. An aerial photo of the plant is shown in Figure 2.

Fig. 2. Beacon Power plant at Hazle Township [18].

Historical financial and regulation signal data for the anal-
ysis was obtained from the PJM website [16]. One year
of data was considered, spanning from June 2014 to May
2015. Day ahead energy prices for the HAZLETON 1-4 node
(PnodeID 11473605) were used. The RMPCP, RMCCP, and
mileage ratio were available directly from the PJM website.
The values for γRU

t and γRD
t were calculated using the 2-

second regulation signal available on the PJM website (using
trapezoidal integration). The RegD regulation data on the
PJM website is normalized from -1 to 1. Assuming that the
regulation bid is assigned, the commanded regulation signal
is calculated by multiplying the RegD signal times the bid
quantity. The parameters for the Beacon plant are shown in
Table II. For this analysis, a discount rate of r = 0 was
employed. The Pyomo optimization modeling language was
used to arrive at the results [19], and the optimization was run
on monthly data.

The arbitrage and regulation results for a representation
of the Beacon Hazle Township flywheel plant using perfect

TABLE II
ENERGY STORAGE SYSTEM PARAMETERS.

Parameter Value

q̄D 20 MWh
q̄R 20 MWh
S̄ 5 MWh
γs 0.98
γc 0.85
ηt 0.95

knowledge for June 2014 to May 2015 data are summarized
in Table III. The columns % qR, % qD, and % qREG

represent the fraction of time spent performing each activ-
ity. As expected, the optimal policy is to participate in the
frequency regulation market the majority of the time. Given
the characteristics of a flywheel plant, i.e., high power and low
energy, the Beacon plant is well suited for the characteristics of
the PJM market compared to a plant that is designed primarily
for energy time shifting (arbitrage). For the time frame consid-
ered, there is considerable variation in the maximum monthly
potential revenue, ranging from $341,281.46 to $998,392.65.
The revenue from the capacity credit, mileage payment, and
arbitrage is presented in Table IV. This data shows the impact
of the mileage payment on total remuneration. The mileage
payment accounts for approximately 24% of total revenue.
While the arbitrage credit is positive for the year, it is negative
for most months. This is likely the result of procuring energy to
maintain a state of charge required to participate in frequency
regulation.

TABLE III
ARBITRAGE AND REGULATION OPTIMIZATION RESULTS USING PERFECT

KNOWLEDGE, JUNE 2014-MAY 2015.

Month % qR % qD % qREG Revenue
06/14 0.65 0.41 98.67 $487,185.94
07/14 1.22 0.38 98.06 $484,494.90
08/14 1.20 0.38 98.06 $354,411.61
09/14 1.23 0.52 97.73 $401,076.97
10/14 1.30 0.38 97.85 $535,293.84
11/14 1.71 0.58 96.43 $431,106.41
12/14 1.07 0.50 96.92 $341,281.46
01/15 0.80 1.10 97.34 $443,436.10
02/15 1.03 1.37 96.59 $998,392.65
03/15 0.87 0.71 98.41 $723,692.29
04/15 0.90 0.20 98.76 $527,436.11
05/15 1.02 0.37 98.62 $666,290.70

Total $6,394,098.97

In order to estimate the potential revenue without perfect
knowledge (e.g., knowing the future), the following strategy
was tested:

• Bid 20 MW into the regulation market every hour
• For hours that result in state of charge violations, stop

following the signal and receive no remuneration



TABLE IV
ARBITRAGE AND REGULATION OPTIMIZATION RESULTS
USING PERFECT KNOWLEDGE, JUNE 2014-MAY 2015.

COMPARISON OF REVENUE STREAMS.

RMCCP RMPCP Arbitrage Total
Month Credit Credit Credit Revenue
06/14 $356,412.73 $130,286.06 $487.16 $487,185.94
07/14 $351,131.53 $135,123.18 -$1,759.82 $484,494.90
08/14 $231,708.06 $124,760.87 -$2,057.32 $354,411.61
09/14 $280,496.49 $121,979.31 -$1,398.84 $401,076.97
10/14 $389,520.38 $148,445.40 -$2,671.94 $535,293.84
11/14 $315,773.83 $117,698.79 -$2,366.21 $431,106.41
12/14 $250,525.71 $92,077.48 -$1,321.73 $341,281.46
01/15 $335,093.93 $102,707.75 $5,634.43 $443,436.10
02/15 $837,537.28 $141,229.67 $19,625.70 $998,392.65
03/15 $561,451.79 $160,354.43 $1,886.07 $723,692.29
04/15 $373,388.33 $155,942.07 -$1,894.29 $527,436.11
05/15 $537,115.47 $129,786.70 -$611.47 $666,290.70
Total $4,820,155.53 $1,560,391.71 $13,551.74 $6,394,098.97

75.38% 24.40% 0.21% 100%

The state of charge was assumed to be 50% at the beginning
of each time period. A state of charge violation occurred if
the state of charge exceeded the range of 0-100%. Using this
strategy, there were 453 hours over the course of the year
where the plant would not have the capacity to follow the
RegD signal (approximately 5.2% of the time). If zero revenue
is assumed for these hours, the total revenue for the year
comes to $5,936,912.40, or 92.5% of the maximum calculated
from the optimization. A slightly more sophisticated algorithm
would likely produce better results.

VI. CONCLUSION

In this paper, a linear programming optimization approach
was outlined for estimating the maximum potential revenue
from an energy storage system participating in arbitrage and
the regulation market with pay-for-performance. The approach
was tailored towards PJM’s pay-for-performance implemen-
tation. If cost data is available, the same methodology can
be used to estimate net revenue. Maximum potential revenue
using perfect foresight is a key metric for evaluating imple-
mentable trading strategies. Using 2014-2015 price data and a
model of the Beacon Power Hazle Township flywheel plant,
the maximum potential revenue from arbitrage and frequency
regulation was estimated assuming perfect foresight. The op-
timal policy was to engage primarily in frequency regulation,
which is well suited for the Beacon Power business model.
A trading strategy that does not require perfect foresight was
also evaluated, and it captured 92.5% of the maximum revenue
calculated from the optimization. Future research will focus on
developing energy storage control algorithms that maximize
revenue without relying on perfect prediction.

ACKNOWLEDGMENT

The authors would like to thank Dr. Imre Gyuk and his
colleagues at the Energy Storage Program at the U.S. De-
partment of Energy for funding this research. Sandia Na-

tional Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department
of Energys National Nuclear Security Administration under
contract DE-AC04-94AL85000.

REFERENCES

[1] S. Stoft, Power System Economics : Designing Markets for Electricity.
Piscataway, New Jersey: IEEE Press and John Wiley & Sons, 2011.

[2] Final Rule Order No. 755: Frequency Regulation Compensation in
the Organized Wholesale Power Markets, Federal Energy Regulatory
Commission, October 2011, 137 FERC 61,064.

[3] Third-Party Provision of Ancillary Services; Accounting and Financial
Reporting for New Electric Storage Technologies, Federal Energy Reg-
ulatory Commission, July 2013, 144 FERC 61,056.

[4] A. A. Akhil, G. Huff, A. B. Currier, B. C. Kaun, D. M. Rastler,
S. B. Chen, A. L. Cotter, D. T. Bradshaw, and W. D. Gauntlett,
“DOE/EPRI 2013 electricity storage handbook in collaboration with
NRECA,” Sandia National Laboratories, Tech. Rep. SAND2013-5131,
July 2013.

[5] P. Mokrian and M. Stephen, “A stochastic programming framework for
the valuation of electricity storage,” in Proceedings of the 26th US-
AEE/IAEE North American Conference, Ann Arbor, Michigan, Septem-
ber 2006.

[6] J. Eyer and G. Corey, “Energy storage for the electricity grid: Benefits
and market potential assessment guide,” Sandia National Laboratories,
Albuquerque, NM, Tech. Rep. SAND2010-0815, February 2010.

[7] J. Rittershausen and M. McDonagh, “Moving energy storage from
concept to reality: Southern California Edison’s approach to evaluating
energy storage,” Southern California Edison, Rosemead, CA, Tech. Rep.,
2011.

[8] F. Graves, T. Jenkin, and D. Murphy, “Opportunities for electricity
storage in deregulating markets,” The Electricity Journal, vol. 12, no. 8,
pp. 46–56, 1999.

[9] R. H. Byrne and C. A. Silva-Monroy, “Estimating the maximum
potential revenue for grid connected electricity storage: Arbitrage and
the regulation market,” Sandia National Laboratories, Albuquerque, NM,
Tech. Rep. SAND2012-3863, December 2012.

[10] R. H. Byrne and C. A. Silva-Monroy, “Potential revenue from electrical
energy storage in the electricity reliability council of Texas (ERCOT),”
in 2014 IEEE Power and Energy Society (PES) General Meeting,
Washington, DC, July 2014, pp. 1–5.

[11] R. H. Byrne and C. A. Silva-Monroy, “Potential revenue from electrical
energy storage in ERCOT: The impact of location and recent trends,” in
2015 IEEE Power and Energy Society (PES) General Meeting, Denver,
CO, July 2015, pp. 1–5.

[12] D. Bender, R. Byrne, and D. Borneo, “ARRA energy storage demonstra-
tion projects: Lessons learned and recommendations,” Sandia National
Laboratories, Albuquerque, NM, Tech. Rep. SAND2015-5242, June
2015.

[13] PJM, “Who we are,” http://www.pjm.com/about-pjm/who-we-are.aspx.
[14] PJM, “PJM manual 28: Operating agreement accounting, revision 71,

june 1, 2015,” http://www.pjm.com/markets-and-operations/ancillary-
services.aspx.

[15] PJM, “PJM manual 12: Balancing operations, revision: 32,
effective date: April 6, 2015,” http://www.pjm.com/markets-and-
operations/ancillary-services.aspx.

[16] PJM, “Ancillary services,” http://www.pjm.com/markets-and-
operations/ancillary-services.aspx.

[17] E. P. Chong and S. Zak, An Introduction to Optimization. New York,
New York: John Wiley & Sons, Inc., 2001.

[18] J. Arseneaux, “20 MW flywheel energy storage plant,” in 2014
DOE/OE Energy Storage Systems Program Peer Review, Washington,
DC, September 17-19, 2014.

[19] W. E. Hart, C. Laird, J.-P. Watson, and D. L. Woodruff, Pyomo–
optimization modeling in python. Springer Science & Business Media,
2012, vol. 67.


